分布式锁初窥-分布式锁的三种实现方式

分布式锁应该具备哪些条件

在分析分布式锁的三种实现方式之前,先了解一下分布式锁应该具备哪些条件:

  1. 在分布式系统环境下,一个方法在同一时间只能被一个机器的一个线程执行;
  2. 高可用的获取锁与释放锁;
  3. 高性能的获取锁与释放锁;
  4. 具备可重入特性;
  5. 具备锁失效机制,防止死锁;
  6. 具备非阻塞锁特性,即没有获取到锁将直接返回获取锁失败。

分布式锁的三种实现方式

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。

在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。有的时候,我们需要保证一个方法在同一时间内只能被同一个线程执行。

1
2
3
基于数据库实现分布式锁;
基于缓存(Redis等)实现分布式锁;
基于Zookeeper实现分布式锁;

基于数据库的实现方式

基于数据库的实现方式的核心思想是:在数据库中创建一个表,表中包含方法名等字段,并在方法名字段上创建唯一索引,想要执行某个方法,就使用这个方法名向表中插入数据,成功插入则获取锁,执行完成后删除对应的行数据释放锁。

  1. 创建一个表

    1
    2
    3
    4
    5
    6
    7
    8
    9
    DROP TABLE IF EXISTS `method_lock`;
    CREATE TABLE `method_lock` (
    `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键',
    `method_name` varchar(64) NOT NULL COMMENT '锁定的方法名',
    `desc` varchar(255) NOT NULL COMMENT '备注信息',
    `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
    PRIMARY KEY (`id`),
    UNIQUE KEY `uidx_method_name` (`method_name`) USING BTREE
    ) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8 COMMENT='锁定中的方法';
  2. 想要执行某个方法,就使用这个方法名向表中插入数据:

    1
    INSERT INTO method_lock (method_name, desc) VALUES ('methodName', '测试的methodName');

因为我们对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。

  1. 成功插入则获取锁,执行完成后删除对应的行数据释放锁:
    1
    delete from method_lock where method_name ='methodName';

注意:这只是使用基于数据库的一种方法,使用数据库实现分布式锁还有很多其他的玩法!

使用基于数据库的这种实现方式很简单,但是对于分布式锁应该具备的条件来说,它有一些问题需要解决及优化:

  1. 因为是基于数据库实现的,数据库的可用性和性能将直接影响分布式锁的可用性及性能,所以,数据库需要双机部署、数据同步、主备切换;

  2. 不具备可重入的特性,因为同一个线程在释放锁之前,行数据一直存在,无法再次成功插入数据,所以,需要在表中新增一列,用于记录当前获取到锁的机器和线程信息,在再次获取锁的时候,先查询表中机器和线程信息是否和当前机器和线程相同,若相同则直接获取锁;

  3. 没有锁失效机制,因为有可能出现成功插入数据后,服务器宕机了,对应的数据没有被删除,当服务恢复后一直获取不到锁,所以,需要在表中新增一列,用于记录失效时间,并且需要有定时任务清除这些失效的数据;

  4. 不具备阻塞锁特性,获取不到锁直接返回失败,所以需要优化获取逻辑,循环多次去获取。

  5. 在实施的过程中会遇到各种不同的问题,为了解决这些问题,实现方式将会越来越复杂;依赖数据库需要一定的资源开销,性能问题需要考虑。

基于Redis实现分布式锁

  1. 选用Redis实现分布式锁原因:
  • Redis有很高的性能;
  • Redis命令对此支持较好,实现起来比较方便
  1. 使用命令介绍:
  • SETNX

SETNX key val:当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。

  • expire

expire key timeout:为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。

  • delete

delete key:删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

  1. 实现思想:
  • 获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
  • 获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
  • 释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。

基于Zookeeper实现分布式锁

ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:

(1)创建一个目录mylock;
(2)线程A想获取锁就在mylock目录下创建临时顺序节点;
(3)获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;
(4)线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;
(5)线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。

这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。

优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁问题。

缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式。

参考